Skip to contents

All functions

add_array_na.rm()
Add two arrays or matrices, ignoring NA values by default
ale()
Create and return ALE data, statistics, and plots
ale_stats()
Calculate statistics from ALE y values.
ale_stats_2D()
Calculate statistics from 2D ALE y values.
calc_ale()
Calculate ALE data
cast()
Cast (convert) the class of an object
census
Census Income
col_sums()
Sum up a matrix across columns
create_p_dist()
Create an object of the ALE statistics of a random variable that can be used to generate p-values
extract_2D_diags()
Extract all NWSE diagonals from a matrix
extract_3D_diags()
Extract all FNWBSE diagonals from a 3D array
idxs_kolmogorov_smirnov()
Sorted categorical indices based on Kolmogorov-Smirnov distances for empirically ordering categorical categories.
intrapolate_1D()
Intrapolate missing values of vector
intrapolate_2D()
Intrapolate missing values of matrix
intrapolate_3D()
Intrapolate missing values of a 3D array
model_bootstrap()
Execute full model bootstrapping with ALE calculation on each bootstrap run
params_data()
Improvements:
  • Validation: ensure that the object is atomic (not just a vector)

  • For factors, get all classes and check if any class_x is a factor or ordered

  • Add arguments to return a unique mode with options to sort: occurrence order, lexicographical Reduce a dataframe to a sample (retains the structure of its columns)

plot(<ale>)
plot method for ale objects
plot(<ale_boot>)
plot method for ale_boot objects
plot(<ale_plots>)
Plot method for ale_plots object
prep_var_for_ale()
Compute preparatory data for ALE calculation
print(<ale>)
Print Method for ale object
print(<ale_plots>)
Print method for ale_plots object
var_cars
Multi-variable transformation of the mtcars dataset.
var_type()
Determine the datatype of a vector